Part 8 Handling missing values
drop_na: drop rows containing missing values.
Create a tibble that contains missing (NA) values:
dfwithNA <- tibble(x = c(1, 2, NA, 5),
y = c("a", NA, "b", "c"))Remove rows that contain NA values with drop_na:
drop_na(dfwithNA)## # A tibble: 2 x 2
## x y
## <dbl> <chr>
## 1 1 a
## 2 5 c
replace_na: change NA values to a selected value (one per column):
# replace NAs by 0s in column "x", and by "k" in column "y"
replace_na(dfwithNA,
list(x=0, y="k"))## # A tibble: 4 x 2
## x y
## <dbl> <chr>
## 1 1 a
## 2 2 k
## 3 0 b
## 4 5 c
complete: turns implicit missing values into explicit missing values:
df <- tibble(
patient = c("Patient1", "Patient1", "Patient2", "Patient3", "Patient3"),
treatment = c("A", "B", "A", "A", "B"),
value1 = 1:5,
value2 = 4:8
)Here we are missing a row for Patient2 / Treatment B: add it and fill in with NA values:
complete(df,
patient, treatment) # columns to expand## # A tibble: 6 x 4
## patient treatment value1 value2
## <chr> <chr> <int> <int>
## 1 Patient1 A 1 4
## 2 Patient1 B 2 5
## 3 Patient2 A 3 6
## 4 Patient2 B NA NA
## 5 Patient3 A 4 7
## 6 Patient3 B 5 8
If you want implicit missing values to be filled by something else than NA, use the fill parameter:
# we will fill in missing values with 0s in column "value1", and with NAs in column "value2"
complete(df,
patient, treatment,
fill=list(value1=0, value2=NA))## # A tibble: 6 x 4
## patient treatment value1 value2
## <chr> <chr> <dbl> <int>
## 1 Patient1 A 1 4
## 2 Patient1 B 2 5
## 3 Patient2 A 3 6
## 4 Patient2 B 0 NA
## 5 Patient3 A 4 7
## 6 Patient3 B 5 8
- In practice: what if you have
NAvalues, along with empty cells and “customized” missing values?
dfwithNA2 <- tibble(col1=c(1, 2, NA, 5, "", 4),
col2=c("a", NA, "b", "c", "d", "missing"))Replace empty cells and “customized” missing values with NA with na_if:
dfwithNA2 %>%
mutate(col1=na_if(col1, ""), col2=na_if(col2, "missing"))## # A tibble: 6 x 2
## col1 col2
## <chr> <chr>
## 1 1 a
## 2 2 <NA>
## 3 <NA> b
## 4 5 c
## 5 <NA> d
## 6 4 <NA>
HANDS-ON
Back to the starwars data set:
- Replace NA in
hair_colorwith “unknown.” - Remove rows that still contain NA values.
Answer
# Replace NA in `hair_color` with "unknown".
# Remove rows that still contain NA values.
replace_na(starwars, list(hair_color="unknown")) %>%
drop_na()